ローマ帝国と土木コンクリートの歴史

ローマ帝国と土木コンクリートの歴史

 歴史は古く、ローマ人がヴェスビオス火山山麓にあった火山灰、石灰、砕石を混合したものが水中で硬化し、強度を増すことに気付き、橋、水道橋、伽藍など建築物や構造物、構築物を造っていたことに始まる

 ローマにある伽藍のドームは型枠すら使用されていた痕跡が確認されている。ローマに現在も残るパンテオンは鉄筋を使用していないコンクリート建築としては世界最大級のコンクリート製ドームの墓であり、ローマン・コンクリートがむき出しの状態である。現在とは異なり、当時のローマではコンクリート壁をレンガなどで覆っていた

 ローマ帝国で使用されたローマン・コンクリートは、生石灰、「ポッツオーリの土」とも称される火山灰軽石を骨材に使用していた。それまでの石、レンガを使用した建築に対し、コンクリートは革命的な材料で、制限されない自由で斬新な設計が可能となり、アーチやヴォールト、ドーム形状などに素早く硬化して剛体となり、それまでの石・レンガ建築で問題であった内部の圧縮・引張りを気にする必要が薄れ、建築史を大きく塗り替えた。

  ち放し(天井部)      スタッコ(天井部)

 最近の評価では、ローマン・コンクリートは現代使用されるポルトランドセメントと比較しても圧縮に対する強度は200kg/と大して変わらないが、鉄筋を使用していない分、引っ張りに対する強度ははるかに低かった。ローマン・コンクリートの骨材には細かく砕いた煉瓦などの瓦礫(がれき)を主に使っていた[3]

古代ローマ帝国遺跡のコンクリートを調査した東北大学教授の久田真は、火山灰を混ぜることで緻密になり耐久性が増したと分析している。北海道立総合研究機構北方建築総合研究所の谷口円は、劣化の原因となる二酸化炭素や塩分の染み込みを、火山灰が妨げて耐用年数が長くなると推測している。ローマ帝国滅亡後の中世ヨーロッパでは大型建築物は石造となり、コンクリートが再び使われるようになったのは産業革命後である。

 ローマのパンテオンの外観。現在も鉄筋などの補強のないものとしては、世界最大のコンクリート製ドームである
 ローマ近郊の墓で、ローマン・コンクリートがむき出しになっている様子。現代のコンクリート建築とは対照的に、ローマではコンクリート壁をレンガなどで覆っていた。

 ローマ帝国でのローマン・コンクリート (Opus caementicium) は、生石灰、ポゾラン(「ポッツオーリの土」と呼ばれる火山灰)、骨材としての軽石から作られていた。ローマ建築に広く使われて建築史上の画期をなし、石やレンガに制限されない自由で斬新な設計の建築が可能となった。

 石やレンガを型枠として使う場合、その積み方によりそれぞれ名称が付いている。2つ以上の工法を用いた場合は、オプス・ミクストゥムと呼ばれることもあった。

●直方体の石を層積み:オプス・クアドラトゥム
●不規則な継ぎはぎ積み:オプス・インケルトゥム
●網目積み:オプス・レティクラトゥム
●煉瓦積み(層積み):オプス・テスタケウム
●オプス・ラテリキウムジグザグ積み:オプス・スピカトゥム

 古代ローマ人にとって、アーチやヴォールトやドームの形状を作ると内部の圧縮や引っ張りを考慮しなくてはならない石やレンガと違い、素早く固まって剛体になるコンクリートは画期的な素材だった。

 最近の評価によると、ローマン・コンクリートは現代のポルトランドセメントを使ったコンクリートと比較しても、圧縮に対する強さは引けを取らない(約200 kg/cm2 )。しかし、鉄筋が入っていないため、引っ張りに対する強さは遥かに低く、したがって使い方も異なる。

 現代のコンクリート構造はローマン・コンクリートのそれと2つの重要な点で異なる。第一に固まる前の現代のコンクリートは流動的で均質であり、型に流し込むことができる。ローマン・コンクリートでは骨材として瓦礫を使うことが多く、手で積み重ねるようにして形成する必要があった。第二に現代のコンクリートは鉄筋を入れることで引っ張りに対する強さが強化されているが、ローマン・コンクリートにはそれがなく、コンクリート自体の引っ張りへの強さだけに依存していた

 ローマ建築ではコンクリートが多用されたため、今日も多くの建築物が残っている。ローマのカラカラ浴場などは、コンクリートの耐用寿命の長さを示している。古代ローマ人はローマ帝国中に同様のコンクリート建築を建設した。ローマ水道ローマ橋の多くは、コンクリートの構造を石で覆っており、同様の技法はコンクリート製ドームのあるパンテオンでも使われている。

 コンクリートの製法約13世紀の間失われていたが、1756年、イギリスの技術者ジョン・スミートンが水硬性石灰(骨材は小石やレンガの破片)を使用したコンクリートを考案した。1824年、ジョセフ・アスプディンがポルトランドセメントを発明し、1840年代初めには実用化している。以上が通説だが、1670年ごろ建設されたミディ運河でコンクリートが使われていることが判明している。

 近年、環境問題が重視されてきていることから、コンクリートの成分に再生素材を使うことが多くなっている。例えば石炭を燃焼する火力発電所がだすフライアッシュなどである。これにより、採石量を減らすとともに産業廃棄物の埋め立て量も減るという効果がある。

 古代ローマや古代エジプトでも、コンクリートの素材に様々な添加物が使用されていた。彼らは火山灰を添加すると水によって固まる性質が生じることを発見した。また、ローマ人は馬の毛を混ぜると固まるときにひびが入りにくくなることや、血を混ぜると凍結に強くなることを知っていた

 現代の研究者も、コンクリートになんらかの素材を添加することで、強度や電気伝導性を高くするなど、コンクリートの性質を改善する実験をおこなっている。

 戦場においてテロリストの脅威に対抗する目的でコンクリートの障壁が利用される事があり、コンクリートは現代の戦場で最も効果的な兵器であるとする意見がある

▶︎コンクリート性能

 現代のポルトランドセメントアルカリ性になる化学反応によって結合しているため、二酸化炭素の侵入による中性化や塩害でしだいに強度を失っていく。そのため、日本のコンクリート建造物の寿命は、およそ50年から100年程度と言われている。これに対して、古代コンクリートは、地殻中の堆積岩の生成機構と同じジオポリマー反応によって結合してケイ酸ポリマーを形成するため、強度が数千年間保たれている

 骨材に火山灰を用いる事例としては、日本国内でも鹿児島大学の武若耕司が九州南部の火山性堆積物であるシラスの有効活用のためにコンクリートの骨材に用いる研究をしている。鹿児島県霧島市に建設された丸尾滝橋では基礎部分にこの「シラス・コンクリート」が採用され、温泉の湯気・高温の地熱・強酸性の土壌があるなどの過酷な環境にもかかわらず、設計上は少なくとも100年持つとされる。また、山口大学工学部池田攻名誉教授等が、地球温暖化防止と鉱物質廃棄物処理に貢献するとして、ジオポリマー技術の有用性を説いている。

 強度が高く、強度発生までの時間が短いため、軍事面での応用や研究も行われている。鉄道の枕木、下水管、滑走路や石造りの建築物の補修など、広範囲の用途で試験的に使われ始めている。

▶︎施 工

 現代のコンクリートと同じく、型枠の中にコンクリートを打設する手法を取る。現代と違うのは、型枠内に「流し込む前」に骨材とモルタルを混ぜるのではなく、型枠内にまず骨材を投入してからモルタルを流し込み空気抜き及び締固めを行う[9]。このプロセスを繰り返して打継をしていくことにより、背の高いコンクリート壁・柱などを施工することができる。このモルタルと骨材の投入の順序について、モルタルを先に投入するという説もある。

 型枠の素材は木材の場合と、石やレンガの場合があった。石やレンガを型枠として使った場合、それらはコンクリート硬化後に取り外されることはなく、建造物と一体となって使用された。木製型枠の場合、それらは取り外され打ち放しのまま完工する場合と、表面にスタッコ(漆喰)塗りやトラバーチン、トゥファ、火山砕屑岩などの石張り仕上げが行われる場合があった。

 2000年もの耐久性を誇るローマ時代のコンクリートは海水の腐食によって強度を上げていた

 コンクリートというと近代技術だと思いがちですが、実は古代ローマにも「ローマン・コンクリート」という建築材料が存在し、パンテオントラヤヌスの市場といった建築物で使われていました。現代のコンクリートの寿命は100年程度だと言われているところ、海中から見つかったコンクリートの構造物は実に2000年の年月に耐えたということで、「なぜこんなにも耐久性が高いのか?」と研究が進められていたところ、海水の腐食によって強度を上げるという仕組みだったということが最新の研究で発表されました。

New studies of ancient concrete could teach us to do as the Romans did
https://phys.org/news/2017-07-ancient-concrete-romans.html

Phillipsite and Al-tobermorite mineral cements produced through low-temperature water-rock reactions in Roman marine concrete | American Mineralogist
http://ammin.geoscienceworld.org/content/102/7/1435

ユタ大学の地質学者マリー・ジャクソン氏が行った研究によると、ローマン・コンクリートの結合力はその構造と海水に含まれるミネラルによるもので、コンクリートの隙間を海水が通り抜けることで、ミネラルの結合を強めるという構造とのこと。実際に、紀元後79年ごろにガイウス・プリニウス・セクンドゥスが記した「Naturalis Historia」という書物の中には、海水にさらすことで耐久性を上げることができるコンクリートの構造物について記されています。

コンクリートを作るにはまず、火山灰・石灰・海水を混ぜてモルタルを作成し、それをコンクリートの骨材となる火山岩が入った型枠内に流し込みます。火山灰と水と生石灰が混ざると、結合能力を持つ化合物が生成されるポゾラン反応が発生し、凝灰岩ができる時の要領でコンクリートが完成するわけです。

現代モルタルの材料として使われているポルトランドセメントでも砂や砂利などが骨材として使われていますが、ローマン・コンクリートとの大きな違いは、それぞれの粒子が化学反応を起こさないように構成されているということ。化学反応が起こるとコンクリートがジェル状になり、ヒビが入ったりと耐久性がなくなってしまうためです。

 ジャクソン氏が調査を行ったところ、なぜこんなにもローマン・コンクリートの耐久性が高いのかという理由の1つは、骨材とモルタルの間のミネラルの連晶がヒビを防ぐということにあるとのこと。現代のコンクリートの骨材の表面は化学反応を起こさないので構造物が長くなるほどヒビが入りやすいのですが、ローマン・コンクリートは構造物に長さがあってもミネラルの連晶によってヒビが入りにくいのです。

また、2002年から2009年までに行われた別のプロジェクトにジャクソン氏らが参加したところ、海水につかったローマン・コンクリートのモルタルからアルミナトバモライトという珍しいミネラルを発見したとのこと。アルミナトバモライトはポゾラン反応によって石灰の粒子の中で結晶化されているのですが、もしアルミナトバモライトを人工的に作り出そうとすれば非常に高温の研究室を必要とし、しかも生成される物質はごく少量になってしまうので、ジャクソン氏は「アルミナトバモライトを作り出すのは非常に難しい」と語っています。

新たな研究でジャクソン氏らがミクロ回折やマイクロ蛍光分析といったさまざまな方法で調べたところ、アルミナトバモライトフィリップサイトといったミネラルがパミスの粒子や孔から発見されました。これまでの研究結果を見たジャクソン氏らは、ポゾラン反応だけではコンクリートの寿命は限られているため、別の何かがコンクリートが完成してから100年後にも温度の低い環境でミネラルを成長させているはずだと考えていました。そして、今回の調査で、海水がコンクリート製の防波堤や桟橋を通り抜けることで火山灰の成分が溶け、ミネラルが成長したことを結論づけたというわけです。

 アルミナトバモライトは珪酸が多く含まれた物質で、火山岩の中にある結晶と同じような形をしています。結晶は平たく母岩を固く結びつける力を持つため、アルミナトバモライトが成長することでコンクリートはより硬さを増していきます。現代では一般的に悪い意味で捉えられる「腐食」のプロセスを利用して、ローマン・コンクリートはさらに強度を上げたというわけです。

 ではなぜ、このローマン・コンクリートが現代でもポルトランドセメントの代わりに使われないのか?というと、「レシピが完全に失われた」ためだとジャクソン氏は語ります。もちろん古代ローマの文書を解読しようという試みは行われているものの、正確な方法は2017年現在、まだ分かっていません。また、海水の中で強度を上げていくには時間がかかり、またポルトランドセメントに比べて圧縮強度が低いという理由から、そのまま現代で広く活用されるという可能性は低いものと見られています。

 一方で、潮力発電用の人工ラグーンイギリスで作る計画があり、建設コストをカバーするには120年は稼働する必要があると考えられています。そこで、腐食に耐えられるラグーンを作り出すために考えられているのが、ローマン・コンクリートの技術とのこと。ただし、長期間にわたる化学反応がどのようなものかについては、まだ謎が多く残っているため、ジャクソン氏らは引き続き研究を行っていくとのことです。